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Camera-based model to predict the total difference between
effect coatings under directional illumination
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A camera-based model is established to predict the total difference for samples of metallic panels with
effect coatings under directional illumination, and the testing results indicate that the model can precisely
predict the total difference between samples with metallic coatings with satisfactory consistency to the
visual data. Due to the limited amount of testing samples, the model performance should be further
developed by increasing the training and testing samples.

OCIS codes: 330.1690, 330.1710, 330.1715, 330.1730.
doi: 10.3788/COL201109.093301.

Products with effect coatings have unique characteristics,
i.e., large change in appearance (color, glint, and coarse-
ness) under different viewing conditions. The traditional
methods of characterizing this kind of coatings can only
assess their color or the gloss level based on the standard
illumination and observation conditions recommended by
commission internationale de edairage (CIE) or interna-
tional standard organization (ISO) without judging the
glint or the coarseness effect of them, which is quite far
from the fact and cannot meet the demand of online
quality control in industries[1,2]. Hence, further studies
have become necessary and urgent due to the growing
number of products with effect coatings and the increas-
ing amount of metallic coatings produced by pigment
manufacturers[3,4].

Metallic coatings are the most common and oldest
effect coatings used in modern industries[3−6]. In con-
trast to conventional solid coatings, the chromaticity and
lightness of metallic coatings strongly depend on illumi-
nation and viewing geometry, thus the metallic coatings
can accentuate the curved profile of an object, which
helps in attracting consumers via the amazing appear-
ance. Traditional instrumental methods for their charac-
terization always include multi-angle or multi-geometry
measurement and concentrate on the angle dependence
of the color. These methods, however, ignored texture
properties that might affect the appearance of effect
coatings heavily. For this reason, a camera-based model,
that could assess effective samples in terms of the total
difference, including color difference and glint difference,
was proposed in this study.

It has been found from the experience of industry appli-
cations that effective pigments affect not only the color
but also another aspect of coating appearance, namely
the visual texture[5−7]. Visual texture is the perceived
small-scale non-uniformity of the color when observed
within a distance of a meter or less. It is an important
property for its contribution to the overall appearance of
effect coatings. Under directional illumination, glint, be-
longing to the scope of visual texture, is considered as the
most important attribute influencing the overall appear-
ance of effective pigments. It is defined as the tiny spot

that is strikingly brighter than its surrounding and only
visible under directional illumination conditions. The
glint effect would change when the observation geome-
try is altered, hence it is angle dependent. Glint value
is supposed to correlate with the local contrast between
the bright sparkle and its surrounding, and the amount of
sparkles as well. In this letter, a camera-based model to
predict the total difference for samples of metallic panels
with metallic coatings under directional illumination was
established.

The statistics of model performance was evaluated
in this study in terms of standardized residual sum of
squares (STRESS)[8], which is calculated by

STRESS =




∑
(∆Ei − F∆Vi)2∑

F 2∆V 2
i




1/2

× 100, (1)

where i is the index, ∆Ei and ∆Vi are two groups of
data, and F always equals 1 since ∆Ei and ∆Vi have the
same unit in this study. Evidently, the STRESS value
will be 0 if the two groups of data are exactly the same.
The STRESS will increase with the rise in the difference
between the two groups.

The visual experiment was completed and illustrated
in the authors’ previous paper[9], thus the focus in this
study is on the algorithm to predict the total difference
of sample pairs via images of physical samples based on a
digital camera. The framework of this model is given in
Fig. 1. The images of samples were taken by the digital
camera NIKON D80 in the same viewing geometry with
the visual experiment under directional illumination, as
shown in Fig. 2, to make sure that the samples could be
precisely represented in the captured images.

The camera was set with f -number (F ) of 6.3 and
exposure time of 1/40 s. The captured images were
3 872×2 592 pixels, with both the vertical and horizon-
tal resolution being 300 dpi. The central 1 000×1 000
pixels of the images, corresponding to the central area of
the samples, were chosen for further image analysis.

In a perfect imaging system, the camera response is
supposed to have a linear relationship with the incident
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Fig. 1. Flowchart of the main framework for the total
difference model under directional illumination.

Fig. 2. Geometry for image capture under directional illumi-
nation with θ being 58◦.

energy. However, the real commercial camera response
would always be corrected as

dRGB = RGBγ , (2)

where dRGB is the charge-coupled device (CCD) re-
sponses of red (R), green (G), and blue (B) channels, γ is
a constant, and RGB is the camera output. There were
six neutral colors in the GretagMacbeth ColorChecker
Color Rendition Chart. In this study, five neutral colors,
four of which were grey and one was black, were uti-
lized to linearize the camera response, and the remaining
neutral color with the highest reflectance was eliminated
because it exceeds the dynamic range of the camera when
being imaged under the experimental condition. This lin-
earization procedure was achieved via two steps. Firstly,

the mean RGB values of each image for the charts were
normalized by dividing the largest RGB values of the
five colors, namely rgb, and the sum of spectral power
distribution (SPD) T , obtained by summing the SPD of
the corresponding samples, which was also normalized as
t by dividing the corresponding largest T value, result-
ing in the data of Table 1. Secondly, taking rgb for the
abscissa and t for the longitudinal, the transformation
function between the normalized camera output rgb and
the linearized lRGB could be determined as

lRGB = α× rgbβ , (3)

where rgb is the normalized camera response, lRGB is
the linearized RGB, and α and β are both constants, as
listed in Table 2, where R2 is statistic using uppercase to
quantify goodness of fit.

The intensity of the illumination was not uniform over
the capturing field due to the spot light source used. In
addition, in the context of the camera, the spatial uni-
formity correction was assumed to compensate for any
non-uniformity in the sensitivity of each individual el-
ement of a CCD array and imperfection in an optical
system. Due to the non-uniformity of the captured im-
age, the original image of a uniform white paper without
fluorescent effect over the viewing field showed that the
sum of the R, G, and B channels ranged from 609 to 705.
The spatial correction in this study was performed in R,
G, and B channels, respectively, by the adoption of the
Hardeberg’s method[10] as

Q(i, j)=
(lRGBw−lRGBd)×[lRGB(i, j)−lRGBd(i, j)]

[lRGBw(i, j)− lRGBd(i, j)]
,

(4)

where lRGB (i, j) is the linearized camera response for
either red, green, or blue channel of the images at pixel
position (i, j); lRGBw and lRGBd are the mean lin-
earized camera responses of the uniform white and uni-
form black, respectively; and Q(i, j) is the RGB value
after the spatial correction.

In order to obtain the color parameters of the samples
from their images, colorimetric characterization must be
carried out for the digital camera, which was realized
by the polynomial regression model with least-square
fitting[11−13]. To determine the optimized augmented
matrix to transfer the linearized lRGB into CIE tris-
timulus values XYZ, various augmented matrices with
different sizes were tested in this study to investigate
their suitability, as shown in Table 3.

Table 1. The Sum of SPD and the Camera Response of the Five Neutral Colors for the GretagMacbeth
ColorChecker Color Rendition Chart

Grey Level T t R G B r g b

1 0.358 1.000 252.427 235.666 168.940 1.000 1.000 1.000

2 0.219 0.614 221.476 204.179 136.517 0.877 0.866 0.808

3 0.112 0.314 187.367 173.193 104.799 0.742 0.735 0.620

4 0.055 0.155 122.868 107.776 45.763 0.487 0.457 0.271

5 0.024 0.068 74.649 63.361 18.940 0.296 0.269 0.112
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Table 2. The α and β Values of R, G, and B
Channels and the Corresponding R2

Channels α β R2

Red 0.7891 2.1215 0.9637

Green 0.7840 1.9589 0.9607

Blue 0.7643 1.1620 0.9554

For the camera characterization, an increase in the
amount of training samples could improve the character-
ization accuracy. Due to the limited amount of available
samples for this study, 44 of the 50 samples were used as
training samples and the remaining 6 as testing samples.
The characterization accuracy was evaluated in terms of
color difference in CIELAB, as listed in Table 4. When
the size of the transfer matrix was 3×20, the mean char-
acterization accuracy was 1.09 CIELAB unit, which was
very close to the just notice difference of 1.0 CIELAB
unit[6]. Although the accuracy was even better when
using the transfer matrix of 3×35, it was more likely
to involve distortion due to the use of the high-order
term of the RGB values[11−13]. Thus, the transfer ma-
trix of 3×20 was employed to perform the colorimetric
characterization of the digital camera. With the trans-
fer matrix of 3×20, the characterization model accuracy
with a different balance between the training and testing
samples was also evaluated. The characterization accu-
racy in terms of CIELAB color difference were 1.12, 3.28,
and 4.17 with the ratio of training and testing samples
being 40:10, 30:20, and 25:25, respectively. It was evi-
dent that the accuracy was not acceptable if the training
samples were less than 40 because of the rapid growth
of characterization error. Moreover, when the amount
of training samples was 44, the characterization model
accuracy was very close to 1 CIELAB color difference,
suggesting that the balance of training and testing sam-
ples adopted in this study is reasonable.

Through the characterization model described above,
the images were transformed from the device-dependent
RGB space into the device-independent XY Z. The hu-
man vision system is more sensitive to the luminance
than to either the chroma or hue; even when watch-
ing a colored object, the observer could only see the
luminance properties for the spots with high level of lu-
minance. Hence, the luminance channel Y was chosen to
extract the glint characteristic.

During the visual experiment, observers were informed
that the glint value was determined by local contrast
between the bright sparkle and its surrounding, together
with the amount of sparkles. The local contrast could be
obtained by subtracting the background from the images,

and the amount of sparkles could be directly counted in
the images. However, it was found after further anal-
ysis that the minimum luminance value of some yellow
samples was bigger than the maximum of some of the
dark samples, while the glint value was less than that
of the dark samples, according to the observer’s opinion.
Herewith, it was necessary to eliminate the background
effect when quantizing the glint, which was realized by
subtracting the mode of the corresponding luminance
image. This mode was the Y value that occurred with
the highest frequency in the image, thus it represented
the luminance value of the background in the image.

Image segmentation was implemented in order to sep-
arate the image into two regions: spots and background.
Similar to the solid color, the distribution of the back-
ground of the samples was a bell-shaped symmetric his-
togram with most of the frequency counts bunched in the
middle and with the counts dying out in the tails[7]. This
implied that the frequency counts would die out at the
critical value t, as shown in Fig. 3, if there is no metallic
coating on the sample surface. Thus, it is reasonable
to utilize the distribution estimation method to realize
image segmentation[7]. As illustrated in Fig. 3, p is the
corresponding mode of each individual image, l is the
minimum pixel value of the corresponding image, and t
with its value of 2p− l is the critical value to distinguish
between the background and the glint spots.

The statistical approach proposed to extract glint char-
acteristics correlated with the measured glint value using
the BYK mac is as[7]

Glint=α×log10





∑
mean

[particle(Y (i, j))]> t

p



+β,

(5)

where α and β are constants, p is the mode of
the corresponding image, t is the critical value,∑

mean(particle(Y (i, j)) > t) is the sum of mean Y val-
ues for the particles that exceed the critical value t in
the corresponding image, and Y is the CIE tristimulus
value. In addition, the particles were found by searching
the eight connected region area with the pixel values that
exceeded t in the image. The parameters α and β were
obtained by minimizing the STRESS value of the mea-
sured glint value and the output of the glint prediction
model of Eq. (5), as shown in Table 5. The STRESS
value of 22 samples suggests that the output of the glint
prediction model is highly consistent with the measured
glint values given by the BYK mac[14−16].

Table 3. Augmented Matrices and the Sizes of Their Colorimetric Characterization Model for Digital Camera

Size Augmented Matrices

3 × 9 R G B RG RB GB R2 G2 B2

3 × 10 R G B RG RB GB R2 G2 B2 1

3 × 11 R G B RG RB GB R2 G2 B2 RGB 1

3 × 20 R G B RG RB GB R2 G2 B2 RGB R2G R2B G2R G2B B2R B2G R3 G3 B3 1

3 × 35
R G B RG RB GB R2 G2 B2 RGB R2G R2B G2R G2B B2R B2G R3 G3 B3 R3G R3B G3R

G3B B3R B3G R2GB RG2B RGB2 R2G2 R2B2 G2B2 R4 G4 B4 1
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Table 4. Performance of the Characterization
Models with Different Transfer Matrices

Size of Augmented Matrices Median Mean Max Min

3×9 2.45 2.76 8.31 0.40

3×10 2.01 2.10 5.01 0.38

3×11 1.65 1.85 4.48 0.24

3×20 0.93 1.09 3.76 0.23

3×35 0.49 0.46 1.42 0.01

Fig. 3. Illustration of the distribution estimation method.

Table 5. Results of the Optimization for the Glint
Prediction Model

α β STRESS

6.16 –21.49 22

Through the procedures above, the glint difference
of each sample pair was calculated. The color difference
of each sample pair was also predicted by employing
the colorimetric characterization model for the camera.
The total difference model could then be established,
which was supposed to have a relationship with the color
difference and the glint difference as

∆T =
√

c1(c2∆L∗2 + ∆a∗2 + ∆b∗2) + c3∆Glint2, (6)

where c1, c2, and c3 are the constants to be opti-
mized; ∆L∗, ∆a∗, ∆b∗, and ∆Glint are the color
difference and glint difference, respectively; and ∆T
is the visual total difference. For the optimiza-
tion of Eq. (6), the STRESS values for the total
difference of all sample pairs and the corresponding√

c1(c2∆L∗2 + ∆a∗2 + ∆b∗2) + c3∆Glint2 were mini-
mized to determine the optimized values of ci.

Similar to the camera characterization, an increase in
the number of training samples could improve the model
accuracy. Because of the limited amount of available
samples for this study, only 36 of the 44 sample pairs were
utilized as training sample pairs. The resulting constants
ci and the corresponding STRESS value of the training
session are listed in Table 6. As seen from the table, c2 is
1.06, which is very close to 1, suggesting that the light-
ness difference is of the same importance with the chro-
matic difference in the total difference for all the sam-
ples. The value of c1(0.82) is less than c3(2.55); mean-
while, it could not be concluded that the glint difference
took greater part than the color difference in the total

Table 6. The Constants ci of the Total Difference
Model and the Corresponding STRESS Value

c1 c2 c3 STRESS

0.82 1.06 2.55 24.8

Fig. 4. Comparison between the total difference of the model
output and the visual results.

Table 7. Model Performance in Terms of the Color
Difference of CIELAB and STRESS

Max Min Mean STRESS

1.82 0.20 1.13 18.6

difference because of their different units.
The performance of the total difference model was

evaluated using the remaining eight testing sample pairs,
including two pairs of purple and green samples and
one pair each of red, grey, blue, and yellow samples. The
comparison between the predicted total difference by the
model and the perceived total difference from the visual
experiment is illustrated in Fig. 4. The scattered points
are distributed evenly on both sides of the 45◦ ideal
line, which indicated that the model accuracy is accept-
able. The model performance, in terms of CIELAB color
difference between the predicted total difference and the
observed total difference and STRESS, also supports
this conclusion; as shown in Table 7, the STRESS value
is 18.6, which is even less than that of the model opti-
mization. This might be because of the limited number
of testing samples. The total difference model accuracy
with a series of various ratios for training and testing
sample pairs was also checked, and the results with ratio
of 30:14, 25:19, and 20:24 were 2.56, 9.62, and 12.01 in
terms of CIELAB color difference, respectively. It was
evident that only the model accuracy with the training
and testing sample pairs of the ratio (36:8) adopted in the
study was close to 1 CIELAB color difference, whereas
the others have values more than 1, implying that the
balance between the training and testing sample pairs
utilized in this study is suitable. The STRESS values of
the model optimization and prediction were both small,
indicating that the model proposed in this study could
effectively predict the total difference of samples with
metallic coating with high accuracy[14−16].

In conclusion, with the method of analyzing the im-
ages of the samples taken by a digital camera under
the same illumination and viewing condition with the
visual experiment, the color and glint information can
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be quantized separately. The color difference and glint
difference of the sample pairs can also be calculated;
thus, the camera-based model is established to predict
the total visual difference of the sample pairs under di-
rectional illumination. The input images for the model
are taken under the viewing geometry that is identical to
visual assessments such that the appearances of the sam-
ples can be accurately represented in the images. The
testing results indicate that the camera-based model can
precisely predict the total difference between samples
with metallic coatings with satisfactory consistency to
the corresponding visual data.
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